38 research outputs found

    Spatial-Aware Object Embeddings for Zero-Shot Localization and Classification of Actions

    Get PDF
    We aim for zero-shot localization and classification of human actions in video. Where traditional approaches rely on global attribute or object classification scores for their zero-shot knowledge transfer, our main contribution is a spatial-aware object embedding. To arrive at spatial awareness, we build our embedding on top of freely available actor and object detectors. Relevance of objects is determined in a word embedding space and further enforced with estimated spatial preferences. Besides local object awareness, we also embed global object awareness into our embedding to maximize actor and object interaction. Finally, we exploit the object positions and sizes in the spatial-aware embedding to demonstrate a new spatio-temporal action retrieval scenario with composite queries. Action localization and classification experiments on four contemporary action video datasets support our proposal. Apart from state-of-the-art results in the zero-shot localization and classification settings, our spatial-aware embedding is even competitive with recent supervised action localization alternatives.Comment: ICC

    Counting with Focus for Free

    Get PDF
    This paper aims to count arbitrary objects in images. The leading counting approaches start from point annotations per object from which they construct density maps. Then, their training objective transforms input images to density maps through deep convolutional networks. We posit that the point annotations serve more supervision purposes than just constructing density maps. We introduce ways to repurpose the points for free. First, we propose supervised focus from segmentation, where points are converted into binary maps. The binary maps are combined with a network branch and accompanying loss function to focus on areas of interest. Second, we propose supervised focus from global density, where the ratio of point annotations to image pixels is used in another branch to regularize the overall density estimation. To assist both the density estimation and the focus from segmentation, we also introduce an improved kernel size estimator for the point annotations. Experiments on six datasets show that all our contributions reduce the counting error, regardless of the base network, resulting in state-of-the-art accuracy using only a single network. Finally, we are the first to count on WIDER FACE, allowing us to show the benefits of our approach in handling varying object scales and crowding levels. Code is available at https://github.com/shizenglin/Counting-with-Focus-for-FreeComment: ICCV, 201

    Infinite Class Mixup

    Full text link
    Mixup is a widely adopted strategy for training deep networks, where additional samples are augmented by interpolating inputs and labels of training pairs. Mixup has shown to improve classification performance, network calibration, and out-of-distribution generalisation. While effective, a cornerstone of Mixup, namely that networks learn linear behaviour patterns between classes, is only indirectly enforced since the output interpolation is performed at the probability level. This paper seeks to address this limitation by mixing the classifiers directly instead of mixing the labels for each mixed pair. We propose to define the target of each augmented sample as a uniquely new classifier, whose parameters are a linear interpolation of the classifier vectors of the input pair. The space of all possible classifiers is continuous and spans all interpolations between classifier pairs. To make optimisation tractable, we propose a dual-contrastive Infinite Class Mixup loss, where we contrast the classifier of a mixed pair to both the classifiers and the predicted outputs of other mixed pairs in a batch. Infinite Class Mixup is generic in nature and applies to many variants of Mixup. Empirically, we show that it outperforms standard Mixup and variants such as RegMixup and Remix on balanced, long-tailed, and data-constrained benchmarks, highlighting its broad applicability.Comment: BMVC 202

    Localizing Actions from Video Labels and Pseudo-Annotations

    Get PDF
    The goal of this paper is to determine the spatio-temporal location of actions in video. Where training from hard to obtain box annotations is the norm, we propose an intuitive and effective algorithm that localizes actions from their class label only. We are inspired by recent work showing that unsupervised action proposals selected with human point-supervision perform as well as using expensive box annotations. Rather than asking users to provide point supervision, we propose fully automatic visual cues that replace manual point annotations. We call the cues pseudo-annotations, introduce five of them, and propose a correlation metric for automatically selecting and combining them. Thorough evaluation on challenging action localization datasets shows that we reach results comparable to results with full box supervision. We also show that pseudo-annotations can be leveraged during testing to improve weakly- and strongly-supervised localizers.Comment: BMV

    No Spare Parts: Sharing Part Detectors for Image Categorization

    Get PDF
    This work aims for image categorization using a representation of distinctive parts. Different from existing part-based work, we argue that parts are naturally shared between image categories and should be modeled as such. We motivate our approach with a quantitative and qualitative analysis by backtracking where selected parts come from. Our analysis shows that in addition to the category parts defining the class, the parts coming from the background context and parts from other image categories improve categorization performance. Part selection should not be done separately for each category, but instead be shared and optimized over all categories. To incorporate part sharing between categories, we present an algorithm based on AdaBoost to jointly optimize part sharing and selection, as well as fusion with the global image representation. We achieve results competitive to the state-of-the-art on object, scene, and action categories, further improving over deep convolutional neural networks

    4-Connected Shift Residual Networks

    Full text link
    The shift operation was recently introduced as an alternative to spatial convolutions. The operation moves subsets of activations horizontally and/or vertically. Spatial convolutions are then replaced with shift operations followed by point-wise convolutions, significantly reducing computational costs. In this work, we investigate how shifts should best be applied to high accuracy CNNs. We apply shifts of two different neighbourhood groups to ResNet on ImageNet: the originally introduced 8-connected (8C) neighbourhood shift and the less well studied 4-connected (4C) neighbourhood shift. We find that when replacing ResNet's spatial convolutions with shifts, both shift neighbourhoods give equal ImageNet accuracy, showing the sufficiency of small neighbourhoods for large images. Interestingly, when incorporating shifts to all point-wise convolutions in residual networks, 4-connected shifts outperform 8-connected shifts. Such a 4-connected shift setup gives the same accuracy as full residual networks while reducing the number of parameters and FLOPs by over 40%. We then highlight that without spatial convolutions, ResNet's downsampling/upsampling bottleneck channel structure is no longer needed. We show a new, 4C shift-based residual network, much shorter than the original ResNet yet with a higher accuracy for the same computational cost. This network is the highest accuracy shift-based network yet shown, demonstrating the potential of shifting in deep neural networks.Comment: ICCV Neural Architects Workshop 201
    corecore